
Towards a B-Method Framework for Smart
Contract Verification: The Case of ACTUS

Financial Contracts

Zakaryae Boudi1[0000−0002−0813−6434] and Toub Mohamed1[0000−0002−4996−5351]

FeverTokens, 55 rue de la Boétie, 75008, Paris, France
{boudi,toub}@fevertokens.io

https://www.fevertokens.io

Abstract. The increasing use of advanced smart contract structures in
finance necessitates rigor and scalability in ensuring their correctness.
Traditional auditing methods fall short in providing comprehensive se-
curity, but formal verification offers a robust and scalable approach to
constructing secure-by-design models and implementing smart contracts.
In this paper, we introduce a B-method framework for modeling and
verifying smart contracts based on the ACTUS standard for financial in-
struments. We start by converting ACTUS specifications into B-method
constructs to bring a systematic approach to model, analyze, and verify
financial contracts’ implementations within the blockchain context.

Keywords: B-method · ACTUS standard · Smart Contracts · Formal
Verification · Financial Instruments · Blockchain · Security.

1 Introduction

Smart contracts have gained significant attention in recent years as a means
of automating transactions and conveying ownership on blockchain platforms.
They are digital contracts that self-execute when certain conditions are met,
allowing for the automation of complex business processes and the elimination
of intermediaries [8, 3]. However, the complexity and potential for errors in smart
contract code pose a significant challenge in ensuring their correct functionality
[16, 12]. Given the immutable and decentralized nature of blockchain, errors in
smart contracts can have dire consequences, such as the loss of funds or inability
to access assets.

In response to these challenges, we advocate for the use of formal verification
techniques to mathematically substantiate the correctness of smart contracts.
These methods enable the mathematical substantiation of a smart contract’s
correctness [4, 11, 10, 7]. In software engineering, the B method is highly regarded
[5], offering a formal specification language alongside tools for analyzing system
behaviors and affirming key properties like safety and liveness [14]. Our selection
of the B method is predicated on its comprehensive modeling capabilities, robust
toolset, an active user community, and its proven track record in developing
safety-critical software [13, 1].

2 Z. Boudi et al.

This paper presents a novel methodology for the formal verification of smart
contracts within the financial domain, specifically those based on the ACTUS
standard for financial instruments. The ACTUS standard represents a holistic
framework for algorithmically defining financial contracts using uniform data
structures and deterministic functions [2]. Our approach includes the applica-
tion of transformation rules for converting Actus specifications into B-method
constructs to enable seamless and comprehensive formal verification process for
any corresponding smart contract implementations.

The organization of this paper reflects the step-by-step approach taken to
implement the B-method framework for modeling and verifying ACTUS-based
financial contracts. We begin by introducing the challenges of scalability and
standardization in smart contracts and the rationale behind FeverTokens’ open-
source Package-Oriented Framework in Section 2. Section 3 provides an overview
of the ACTUS standard and its significance in representing financial contracts.
Section 4 delves into the preliminary B-method framework for financial smart
contracts, demonstrating the process of transforming ACTUS specifications into
B-method structures.

2 Smart contracts scalability and the rationale behind the
FeverTokens open-source Package-Oriented Framework

In the blockchain sphere, the scalability of smart contracts is a critical fac-
tor, especially as their complexity and applicability increase across various sec-
tors. FeverTokens confronts this issue with its pioneering open-source Package-
Oriented Framework, aimed at augmenting the scalability and flexibility of smart
contracts [9]. This framework adopts a modular, package-oriented architecture,
enabling developers to construct smart contracts as individual, updatable mod-
ules. This method enhances development efficiency and provides significant adapt-
ability and scalability improvements.

The essence of the FeverTokens framework is its emphasis on functional scal-
ability, allowing smart contracts to seamlessly integrate new functionalities while
ensuring the integrity and security of the blockchain. Its open-source model pro-
motes a collaborative development atmosphere, inviting community engagement
and contributions, which fosters a robust and varied ecosystem of smart contract
modules and encourages continuous innovation.

A key advantage of the framework is its capacity to facilitate advanced in-
tegration of established standards, particularly in the realm of financial instru-
ments like ACTUS and Common Domain Model (CDM) by the ISDA [6]. The
modular architecture of the framework is strategically designed to support the
creation of libraries consisting of packages that correspond to specific standard-
ized financial instruments. This feature is particularly beneficial for builders and
institutions engaged in tokenization systems.

By aligning with standards like ACTUS and CDM, the framework ensures
that the financial instruments modeled within it are compliant with global finan-
cial regulations and practices. This compliance is crucial for institutions looking

Towards a B-Method Framework for Smart Contract Verification 3

to leverage blockchain technology for financial applications. The availability of
these standardized packages within the framework not only simplifies the devel-
opment process for builders but also enhances the reliability and interoperabil-
ity of financial instruments across different platforms and systems. The modular
approach, therefore, plays a pivotal role in bridging traditional financial models
with the innovative capabilities of blockchain technology, offering a seamless and
compliant pathway for the tokenization and management of financial assets.

Leveraging the Diamond standard (ERC-2535) [15], originally introduced by
the Ethereum community as a solution to smart contract size limitations, the
FeverTokens framework adds a substantial engineering layer to transform this
standard into a tool for functional scalability. This enhancement standardizes
facet and diamond structures within the framework, facilitating the seamless
packaging and integration of modular smart contract components. This struc-
ture not only simplifies the management of smart contracts but also enables
effective scaling in terms of version control, operational oversight, deployment,
and upgrades. FeverTokens is actively developing infrastructure to efficiently
manage these packages, addressing the challenges associated with scaling. The
nature of this architecture underlines the importance of rigorous security ver-
ification processes. Given the increased frequency of updates and the inherent
complexity of this system, verification efforts must be multi-dimensional, en-
compassing individual packages, the overall diamond structure, and governance
aspects.

Traditional auditing methods, while reliable, become less feasible and more
costly in this expanded scope. Consequently, automated formal verification mech-
anisms are crucial for ensuring safe-by-design development, enabling the frame-
work to maintain robust security standards despite its scalability and modular
complexity.

3 Overview of the Actus standard and financial contracts

The ACTUS (Algorithmic Contract Types Unified Standards) standard is a piv-
otal development in the digital representation of financial contracts. Financial
contracts, essentially legal agreements between parties for the exchange of future
cash flows, are defined unambiguously through a set of contractual terms and
logic. This clarity allows for their mathematical description and digital repre-
sentation as machine-readable algorithms. The advent of distributed ledger and
blockchain technologies, particularly the use of smart contracts, has opened up
novel possibilities for these natively digital financial contracts.

Financial contracts typically follow established cash flow exchange patterns.
Examples include bullet loan contracts with fixed principal payments and vari-
able interest payment schedules, and amortizing loans where principal is paid
back in portions. The ACTUS standard, through its taxonomy, organizes finan-
cial contracts based on their distinct cash flow patterns, covering a wide array
of financial instruments like shares, options, swaps, and credit enhancements.
The deterministic nature of these financial contracts is key. They define a set

4 Z. Boudi et al.

Table 1. Meta-structure of ACTUS financial contracts

Key Actus Element Description
Contract Attributes These represent the legal terms of a financial contract and

define the exchange of cash flows.

State Variables These describe the state of a contract at a specific point in
time. Examples include the outstanding Notional Principal
and the applicable Nominal Interest Rate.

Contract Events These are scheduled or unscheduled events that occur at spe-
cific times during the contract’s lifetime. They mark points
where cash flows are exchanged or where the states of the
contract are updated.

State Transition Func-
tions (STFs)

These define the transition of states from a pre-event state
to a post-event state when a certain event occurs. STFs are
specific to each event type and contract type.

Payoff Functions (POFs) These define how the cash flow for a certain event is derived
from the current states and contract terms. Payoff Functions
are specific to each event and contract type.

of rules and conditions under which, given any external variables, the cash flow
obligations can be unambiguously determined. For example, in a fixed-rate loan,
the obligations are explicitly defined, whereas in a variable rate loan, the rules
for rate determination are set in advance, enabling clear derivation of future
obligations. This deterministic approach forms the foundation of the ACTUS
standard, providing a technology-agnostic, standardized description of financial
contracts’ cash flow obligations.

The integration of ACTUS with formal methods in the context of smart con-
tracts offers numerous benefits. In the case of ACTUS-based smart contracts,
they ensure that the contracts behave as intended, especially crucial given the
financial implications and complex interactions involved. By using formal meth-
ods, developers can prove the correctness of these contracts against their speci-
fications, thereby reducing the risk of errors and vulnerabilities. This approach
is particularly beneficial in financial contexts and will play a crucial role in the
safe and effective implementation of ACTUS standards in smart contracts.

4 A preliminary B-method framework for financial smart
contracts under the Actus standard

In the ACTUS framework, financial contracts are defined using a meta-structure
comprising several key elements: Contract Attributes, State Variables, Contract
Events, State Transition Functions, and Payoff Functions (Table 1). The con-
tribution of this paper lies in translating this complex meta-structure into a
B-method project structure.

Towards a B-Method Framework for Smart Contract Verification 5

We encapsulate the ACTUS components within the B-method’s formal con-
structs, facilitating not only the rigorous formalization of financial contracts
but also ensuring their correctness and reliability through mathematical proof.
Each ACTUS component –attributes, state variables, events, STFs, and POFs–
is translated into a B-method construct, enabling a systematic and precise devel-
opment of financial contracts (Figure 1). Figure 1 reflects the mapping of the AC-
TUS specification onto a B-method structure where the Contract Attributes are
implemented in the contract_head machine, while utility functions are imple-
mented in separate modules (utility.mch and env.mch). The contract_main
contains the key variables and operations that define the core functionality of
the contract, with contract_main_i implementing the operations, encompass-
ing the state transition and payoff logic.

Contract Attributes
Legal contractual terms

State Variables
 state of a contract at a
specific point in time

State Transition Functions (STF)

B-method structureActus specification

Contract_head

Contract_main

SEES

Utility

Contract_main_i

INCLUDES

Implements operations

Defines key variables
and operations

Implements utility
functions

Implements Contract
Attributes

Meta-model of an Actus Contract Actus mapping to B

Contract Events

Payoff Functions (POF)

C
ontract L

ifetim
e

Env

INCLUDES

SEES SEES

Fig. 1. Actus meta-model mapping to B-method structure.

In the context of formalizing financial contracts using the B-method, we set
a head machine that serves as the cornerstone for this contract model, encap-
sulating the foundational constants and properties that govern the contract’s
behavior throughout its lifecycle (Figure 2).

The head machine delineates a set of concrete constants –immutable param-
eters that define the financial contract’s structure. The properties of the head
machine establish the exact values for these constants, such as a notional amount
of 100 units and an interest rate of 5%.

On the one hand, env machine within the B-method model functions as the
dynamic context for the contract (Figure 3). It sees the head machine constants,
and it manages the stateful aspects of the contract’s lifecycle. The OPERA-
TIONS section defines actions that can be performed on the contract’s state,
such as updating the contract performance, setting payoff and state transition
statuses, and progressing the date to simulate the passage of time. On the other
hand, the utility machine provides essential computational operations that serve

6 Z. Boudi et al.

MACHINE

 head

SETS

 Contract_Performance_States = {Performing, Delinquent, Default, Terminated, Matured};

 Event_states = {NA,missed,done}

CONCRETE_CONSTANTS

 NT,

 IPNR,

 MD,

 SD,

 PF_states,

 Year_convention

PROPERTIES

 NT = 100 &

 IPNR = 5 &

 MD = [01,09,2040] &

 SD = [01,09,2009] &

 PF_states = Contract_Performance_States &

 Year_convention = 365

END

Fig. 2. PAM example: the head machine.

MACHINE

 env

SEES

 head

VARIABLES

 Contract_performance,

 Date,

 IP_event_tracker,

 MD_event_tracker,

 IP_payment_tracker,

 STF_IP_status,

 POF_IP_status

INVARIANT

 Contract_performance : PF_states &

 Date : NATURAL &

 IP_event_tracker : seq(Event_states) &

 MD_event_tracker :seq(Event_states) &

 IP_payment_tracker : seq(seq(NATURAL)) &

 POF_IP_status : BOOL &

 STF_IP_status : BOOL

INITIALISATION

 Contract_performance := Performing ||

 Date := 1 ||

 IP_event_tracker := []||

 MD_event_tracker := [] ||

...

 IP_payment_tracker := [[0,0,0]] ||

 POF_IP_status := FALSE ||

 STF_IP_status := FALSE

OPERATIONS

 SET_Contract_performance (ii) =

 PRE

 ii : PF_states

 THEN

 Contract_performance := ii

 END;

 SET_POF_IP_status (ii) =

 PRE

 ii : BOOL

 THEN

 POF_IP_status := ii

 END;

date <-- GET_Date =

 BEGIN

 date := Date

 END;

 BULK_SET_IP_event_tracker (ii) =

 PRE

 ii : seq(Event_states)

 THEN

 IP_event_tracker := ii

 END;

...

SET_IP_event_tracker (ii,date) =

 PRE

 ii : Event_states & date : NATURAL1

 THEN

 IP_event_tracker(date) := ii

 END;

 SET_IP_payment_tracker (ii,date) =

 PRE

 ii : seq(NATURAL) & date : NATURAL1

 THEN

 IP_payment_tracker(date) := ii

 END;

 MONTH_STEP_Eventdate =

 PRE

 Date : NATURAL

 THEN

 Date := Date + 1

 END

END

Fig. 3. PAM example: excerpt of the env machine

various other components of the model. It acts as a library of functions that can
be invoked to perform specific calculations needed for the contract’s processing.

The main_i implementation refines the abstract main machine and serves
as the executable part of the PAM contract within the B-method framework. It
leverages the definitions and constants from the head machine and the dynamic
behavior specified in the env machine, as well as the computational functions
provided by the utility machine. The main_i operations collectively simulate

Towards a B-Method Framework for Smart Contract Verification 7

the contract’s progression through time, calculate payments, and track events,
embodying the dynamic aspects of the contract’s execution (Figure 4).

IMPLEMENTATION main_i

REFINES main

SEES

 head

IMPORTS

 env, utility

CONCRETE_VARIABLES

 Nt,

 Accr,

 Schedule_AD

INVARIANT

 Nt : INTEGER &

 Accr : INTEGER &

 Schedule_AD : POW(INTEGER)

INITIALISATION

 Nt := NT;

 Accr := 0;

 Schedule_AD := {}

OPERATIONS

 IP_EVENT (state) =

 BEGIN

 VAR date IN

 date <-- GET_Date;

 SET_IP_event_tracker (state,date)

 END

 END;

 ...

 Init_trackers =

 BEGIN

 VAR md,init_ip_event_tracker IN

 md <-- calculate_months(SD(3), SD(2),MD(3), MD(2));

 init_ip_event_tracker := {ee | ee : NATURAL1 & ee <= md}*{NA};

 BULK_SET_IP_event_tracker (init_ip_event_tracker)

 END

 END;

 Step =

 BEGIN

 VAR date IN

 date <-- GET_Date;

 IF date+1 : Schedule_AD

 THEN

 SET_IP_event_tracker(done,date+1);

 VAR md,dcf,ip IN

 md <-- calculate_months(SD(3), SD(2),MD(3), MD(2));

 dcf <-- calculate_day_count_fraction_ACT (date,md,Year_convention);

 ip := [Nt * IPNR * dcf(1),dcf(2), Nt * IPNR * dcf(3)];

 SET_IP_payment_tracker(ip,date+1)

 END;

 MONTH_STEP_Eventdate

 ELSE

 SET_IP_event_tracker(missed,date+1);

 SET_IP_payment_tracker([0,0,0],date+1);

 MONTH_STEP_Eventdate

 END

 END

 END

END

Fig. 4. PAM example: excerpt of the main_i implementation

5 Conclusion and Perspectives

This paper has outlined a B-method framework tailored for the verification of
smart contracts, with the ACTUS standard serving as a cornerstone for financial
instruments. Looking ahead, we envision the application of this framework to the
real case of Bond & Swap instruments, inviting both the financial industry and
the research community to contribute to the evolution of this framework.

Future work will also include defining an approach for verifying Solidity im-
plementations of ACTUS, exploring the potential for Solidity and bytecode gen-
eration directly from B models. This promises a seamless transition from model
verification to practical deployment in the blockchain environment. The ultimate
goal is to automate and certify the underlying methodology and tooling, ensur-
ing a standard of excellence that facilitates safe-by-design development. By doing
so, this work paves the way for robust financial instruments on the blockchain,
marked by high levels of security and trust.

Acknowledgments. This research was supported by funding from the Casper Asso-
ciation and Bpifrance. We acknowledge their contributions, which have facilitated the
foundational aspects of our study and set the stage for future developments.

8 Z. Boudi et al.

References

1. Boudi, Z., Collart-Dutilleul, S., et al.: Safety critical software construction using
cpn modeling and b method’s proof. In: SESA 2014, Software Engineering and
Systems Architecture. p. 4p (2014)

2. Brammertz, W., Mendelowitz, A.I.: From digital currencies to digital finance: the
case for a smart financial contract standard. The Journal of Risk Finance 19(1),
76–92 (2018)

3. Britsiani, N.: Smart contracts: Legal aspects (Sep 2022),
https://repository.ihu.edu.gr//xmlui/handle/11544/30033, accepted: 2022-09-
30T08:47:30Z

4. Buchs, D., Klikovits, S., Linard, A.: Petri Nets: A Formal Language to Specify
and Verify Concurrent Non-Deterministic Event Systems. Foundations of Multi-
Paradigm Modelling for Cyber-Physical Systems pp. 177–208 (2020)

5. Butler, M., Körner, P., Krings, S., Lecomte, T., Leuschel, M., Mejia, L.F., Voisin,
L.: The first twenty-five years of industrial use of the b-method. In: Interna-
tional Conference on Formal Methods for Industrial Critical Systems. pp. 189–209.
Springer (2020)

6. Clack, C.D.: Design discussion on the ISDA Common Domain Model. Journal of
Digital Banking 3(2), 165–187 (2018)

7. Colin, S., Mariano, G.: Coq, l’alpha et l’omega de la preuve pour B? (2009)
8. Cornelius, K.B.: Smart Contracts as Evidence: Trust, Records, and the Future of

Decentralized Transactions. In: Hunsinger, J., Allen, M.M., Klastrup, L. (eds.) Sec-
ond International Handbook of Internet Research, pp. 627–646. Springer Nether-
lands, Dordrecht (2020)

9. FeverTokens: FeverTokens’ open-source Package-Oriented Framework (2023),
https://github.com/FeverTokens/ft-package-oriented-framework, accessed: De-
cember 2023

10. Hansen, D., Leuschel, M.: Translating B to TLA+ for validation with TLC. Science
of Computer Programming 131, 109–125 (2016)

11. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use. Springer Science & Business Media (1996)

12. Khan, S.N., Loukil, F., Ghedira-Guegan, C., Benkhelifa, E., Bani-Hani, A.:
Blockchain smart contracts: Applications, challenges, and future trends. Peer-to-
peer Networking and Applications 14, 2901–2925 (2021)

13. Lahbib, A., Ait Wakrime, A., Laouiti, A., Toumi, K., Martin, S.: An event-B based
approach for formal modelling and verification of smart contracts. In: Advanced
Information Networking and Applications: Proceedings of the 34th International
Conference on Advanced Information Networking and Applications (AINA-2020).
pp. 1303–1318. Springer (2020)

14. Treharne, H., Schneider, S.: How to drive a b machine. In: ZB 2000: Formal Spec-
ification and Development in Z and B: First International Conference of B and
Z Users York, UK, August 29–September 2, 2000 Proceedings 1. pp. 188–208.
Springer (2000)

15. Van Vulpen, P., Heijnen, H., Kroon, T., Mens, S., Jansen, S.: Decentralized Au-
tonomous Organization Governance By Upgradeable Diamond Smart Contracts.
Available at SSRN 4634762 (2023)

16. Zou, W., Lo, D., Kochhar, P.S., Le, X.B.D., Xia, X., Feng, Y., Chen, Z., Xu, B.:
Smart contract development: Challenges and opportunities. IEEE Transactions on
Software Engineering 47(10), 2084–2106 (2019)

